
Model Checking Reachability Properties for

Quantum Markov Chains

Jens Chr. Godskesen
IT University of Copenhagen

Abstract

We propose a discrete time quantum Markov chain (QMC) related
to previous proposals but yet with a different semantics. A probability
measure is defined similar to as for DTMCs in contrast to e.g. the super
operator valued measure in [2]. Our work is based on a simple imperative
quantum pseudo programming language and its denotational semantics
which naturally leads to a definition of a QMC. As a novelty we demon-
strate how reachability events of a QMC expressed in a simple temporal
logic like notation may be checked similar to as for DTMCs as transient
state probabilities and how probability intervals of such events may be
computed by smallest fixed-point solutions to linear equations.

1 Introduction

Quantum computing had its beginnings in 1982 when Feynman [3] pointed out
that a quantum mechanical system can be used to perform computations. The
prime factoring algorithm by Shor [9] published in 1994 with its exponential
speedup compared to the best performing known algorithms running on tradi-
tional computers solving the same problem is a notable contribution illustrating
the quantum computing potential. Since the publication of Shor’s result there
has been much research about quantum algorithms and quantum computing.

While we are still waiting for quantum computers with sufficiently many
logical qubits to be able to run algorithms like Shor’s we have seen development
of quantum programming languages. The first real quantum programming lan-
guage from 2003 is due to Ömer [7]. An influential paper from 2004 by Sellinger
[8] proposes a quantum programming language with a denotational semantics
and partial density matrices as denotations.

Formal methods for reasoning about quantum programs and algorithms have
been widely studied the last two decades. The paper [4] from 2005 is an early
example of using the probabilistic model checker PRISM [6] to verify quantum
protocols in a classical probabilistic framework. Later variants of Markov chains,
quantum Markov chains, were tailored towards modeling and verification of
quantum systems. A recent book [11] by Ying et al. gives a state of the art

1

of model checking quantum systems described by quantum Markov chains and
their properties in extensions of classical temporal logics.

The contribution of this paper is a denotational semantics of a simple im-
perative quantum pseudo programming language, an approach corresponding
to the one in [10]. The program semantics naturally leads to the definition of
the notion of a discrete time quantum Markov chain (QMC). Our notion of a
QMC is similar to the super-operator weighted Markov chain defined in [2] by
Ying et al., however we define a probability measure like for DTMCs in contrast
to the super-operator valued measure proposed by Ying et al. As a novelty we
show how verification of reachability events in a temporal logic like notation
may be carried out using verification techniques known from DTMCs. Notably
we show how intervals for bounded reachability events may be computed as
transient state probabilities and how probability intervals for unbounded con-
strained reachability events may be computed through the least fixed-point of
two sets of linear equations on operators on partial density matrices.

2 A pseudo quantum programming language

We define an imperative quantum pseudo programming language with quantum
variables on which unitary operators may be applied. The language contains
probabilistic branching and a probabilistic loop construction. The language
adopts the idea of ”classical control and quantum data” presented in [8].

Assume a finite set of qubit quantum variables ranged over by q. The syntax
of our pseudo programming language is defined by the grammar:

P ::= V begin S end

V ::= qubits r; register r; | register r;

r ::= q,r | q

S ::= 0 | U(r) | S;S | if M[q] then S else S | while M[q] do S end

Prog is the set of all terms generated by the grammar for P, Var is the set of all
terms generated by the grammar for V, and Stmt is the set of all terms generated
by the grammar for S. Brackets may be used to avoid ambiguities.

A program starts with a declaration of quantum variables. Some are local
and those occuring after the keywork register belong to a register that will
contain the program result. Intuitively the meaning of a term in Stmt is as
follows. 0 is the inactive code. U(r) means that a unitary operator U is applied
to the qubits referred to by the variables r. Program parts may be put together
in sequence S;S. The if construction does a mesurement M on a single qubit
q. If the outcome is the state 1 (corresponding to true) the then branch is
pursued, otherwise the statement affiliated with else is carried out. The loop
construction measures the state of a single qubit variable, if the outcome is state
1 then the loop continues otherwise it terminates. 1

1Notice that qubits cannot be copied, so the syntax supports the non-cloning property of
quantum physics.

2

begin

qubits c;

register p, q;

X(c);

while M[c]

do H(c);

if M[c] then A+(p,q) else A-(p,q);

H(c)

end

end

Figure 1: The program P0.

Suppose a random walk program P0 over three qubit variables c, p and q as
defined in Figure 1. Intuitively c acts as a coin, H is the Hadamard operation on
qubits, and X swap qubit states. The two variables p and q constitute a register
of two qubits representing the states |00⟩, |01⟩, |10⟩ and |11⟩ corresponding to
the binary representation of the numbers 0, 1, 2 and 3. The operator A+ adds
1 modulo 4 to a state |i⟩, and A- subtracts 1. We let the program be prepared
such that all qubits are initialized to |0⟩. Measuring the coin we enter the loop
whenever the coin is in state |1⟩, hence the program is probabilistic. Note that
the loop will for sure be entered once. The first step in the loop is to apply the
Hadamard operation on the coin. Measuring the coin again we may then with
equal probability either add or subtract 1 modulo 4 to the register of p and q.
The last step in the loop is to apply the Hadamard operation on the coin. The
loop will then be entered again with probability a half. What will be the result
of running the program? What is the likelihood of the result being an even
register value or an odd register value? Will we with equal probability observe
an even or odd value? The answer to the latter question is, as we shall see, no.

3 Preliminaries

Let C be the set of complex numbers. Suppose n > 0 qubit unit vectors |ψi⟩ ∈
C2. The qubits constitute a unit vector |ψ⟩ = |ψ0⟩ ⊗ · · · ⊗ |ψn−1⟩ in H, a finite
dimensional Hilbert vector space C2n with inner and outer product ⟨ψ|ψ′⟩ ∈ C
and |ψ⟩ ⟨ψ| ∈ C2n×2n respectively, and computational basis |0⟩ , . . . , |2n − 1⟩.

Consider the set of square matrix operators on vectors in H. H is the set
of Hermetian matrices, i.e. M ∈ H if M = M† where M† is the conjugate
transpose ofM . M is normal ifM ·M† =M† ·M , hence allM ∈ H are normal.
P ⊆ H is the set of positive matrices, i.e. M ∈ P if ⟨ψ|M |ψ⟩ ≥ 0 for all |ψ⟩.
M is positive definite if ⟨ψ|M |ψ⟩ > 0 for all non-zero |ψ⟩.

Let D ⊆ P be the set of partial density matrices, i.e. ρ ∈ D is Hermetian,
positive, and Tr(ρ) ≤ 1. ρ is a density matrices if Tr(ρ) = 1. Sometimes we
write Dn to signify D ⊆ C2n×2n , i.e. ρ ∈ Dn is a partial density matrix over n

3

qubits. Partial density matrices may be composed using tensor products such
that whenever ρ ∈ Dn and ρ′ ∈ Dm then ρ⊗ρ′ ∈ Dn+m. A partial density matrix
may be decomposed through a partial trace mapping TrDn

: Dn+m → Dm

defined by:

TrDn
(ρ) =

∑
i

(⟨i| ⊗ I) · ρ · (|i⟩ ⊗ I)

where I is the identity matrix on Dm and {|i⟩} is the computational basis for
Dn. It follows that Tr(ρ) = Tr(TrDn

(ρ)). For instance, whenever ρ ∈ Dn and
ρ′ ∈ Dm then

TrDn
(ρ⊗ ρ′) =

∑
i(⟨i| ⊗ I) · ρ⊗ ρ′ · (|i⟩ ⊗ I)

=
∑

i(⟨i| · ρ · |i⟩)⊗ I · ρ′ · I
= Tr(ρ) · ρ′

P ∈ H is a projection if P · P = P . A finite sequence {Pi} of projections
is a projective measurement if Pi · Pj = 0 when i ̸= j and

∑
Pi = I. Letting

by convenience M/p = 0 when p = 0 the outcome of a projective measurement
{Pi} applied on a partial density matrix ρ is a finite sequence, an ensemble, of
partial density matrices

{Pi}(ρ) = {(pj , Pj · ρ · Pj
†/pj) | pj = Tr(Pj · ρ), Pj ∈ {Pi}}

where Tr(ρ) =
∑
pj . That is, the outcome of the projective measurement is

one of Pi · ρ · Pi
†/Tr(Pi · ρ) ∈ D with probability Tr(Pi · ρ).

Define the (Löwner) partial order ⊑ on D by ρ ⊑ ρ′ if ρ′ − ρ ∈ P. (D,⊑) is
a complete partial order (CPO).

Let (A,⊑) be a partial order. Define the lifted partial order (A → A,⊑) by
letting F ⊑ G whenever F(a) ⊑ G(a) for all a, and for any increasing sequence
{Fi} the function ∪Fi is defined by (∪Fi)(a) = ∪(Fi(a)) where ∪(Fi(a)) is the
least upper bound of {Fi(a)}. If (A,⊑) is complete (A → A,⊑) is complete.

For a CPO (A,⊑) F : A → A is monotonic if F(a) ⊑ F(a′) whenever a ⊑ a′.
F is continuous if F(∪ai) = ∪F(ai) for all increasing sequences {ai}.

4 Denotational semantics

In this section we give a denotational semantics for our imperative quantum
pseudo programming language. Others, e.g. [10], have proposed similar denota-
tional semantics for quantum programming languages.

Suppose a program P with m local variables and n > 0 register variables.
The denotational semantics for P is defined by a function J K : Prog → Dn

where
JV begin S endK = TrDm

([[S]](JVK))

4

with J K : Var → Dm+n defined by

Jqubits r; register s;K = JrK ⊗ JsK
Jregister r;K = JrK
Jq, rK = |0⟩ ⟨0| ⊗ JrK
JqK = |0⟩ ⟨0|

initializing each qubit variable to |0⟩. Note how the part involving local variables
is decomposed from the resulting semantics of JPK.

The semantics of statements is defined by the function

[[]]() : Stmt×Dm+n → Dm+n

For each unitary operator U(r) we let UU(r) ∈ M be the corresponding
unitary matrix (applied on all qubits in the program). A matrix U is unitary if
it is normal and U · U† = I. For the inactive code, the unitary operator, and
statement composition we have

[[0]](ρ) = ρ

[[U(r)]](ρ) = UU(r) · ρ · UU(r)
†

[[S;T]](ρ) = [[T]]([[S]](ρ))

Since UU(r) is a unitary operator UU(r) ·ρ ·UU(r)
† is a partial density matrix if ρ is,

and if both [[T]]() and [[S]]() preserves partial density matrices then by induction
also [[S;T]]() does.

The two 2 times 2 matrices P0 = |0⟩ ⟨0| and P1 = |1⟩ ⟨1| are qubit projec-
tions into their computational basis and together they constitute a projective
measurementM = {P0, P1}. We may be interested in a measurement of a single
qubit that is combined with other qubits. Let j ∈ {0, . . . ,m + n − 1} be the
index for the variable q for the qubit we want to measure. DefineMi = {P0, P1}
if i = j and Mi = {I} otherwise where I is the 2 times 2 identity matrix, and
let

M [j] = {Q0 ⊗ · · · ⊗Qm+n−1| Qi ∈Mi}

Writing P̂i for Q0⊗· · ·⊗Pi⊗· · ·⊗Qm+n−1 thenM [j] = {P̂0, P̂1} is a projective

measurement in the computational basis of C2m+n

.
Given a pseudo program withm+n qubit variables, let j ∈ {0, . . . ,m+n−1}

be the index of the variable q in M[q]. Letting

M [j](ρ) = {(pi, ρi) | pi = Tr(P̂iρ), ρi = P̂iρP̂
†
i /pi, P̂i ∈M [j]}

the semantics of the if statement is as a partial density matrix being a linear
combination of partial density matrices

[[if M[q] then S else T]](ρ) = p0[[T]](ρ0) + p1[[S]](ρ1)

assuming by induction [[S]]() and [[T]]() preserves partial density matrices. Note
that we let the projection P̂0 represent ”false” and P̂1 represents ”true”

5

For the semantics of the while construct let q in M[q] be the qubit indexed by
j. This gives like above a projective measurement M [j] = {P̂0, P̂1}. Assuming
by induction [[S]]() preserves partial density matrices, define two endo-functions
F0 and F1 on Dm+n by

F0(ρ) = P̂0ρP̂
†
0 F1(ρ) = [[S]](P̂1ρP̂

†
1)

then letting F0 = I

[[while M[q] do S end]](ρ) =

∞∑
i=0

F0(F1
i(ρ))

I.e. the semantics of the while construction is the least fixed-point for the
continuous higher order endo-function Fwhile on Dm+n → Dm+n where

Fwhile(F) = F0 + F(F1)

The least fixed-point is due to Knaster-Tarski the least upper bound of the
increasing sequence: 0 ⊑ F1

while(0) ⊑ F2
while(0) ⊑ . . . ⊑ Fj

while(0) . . .

4.1 Termination

Programs may not terminate and loop indefinitely. As an example, consider

begin

register q;

X(q);

while M[q] do 0 end

end

Cleary this is an infinite loop, it terminates with probability 0. Each element
in the infinite sum

∑∞
j=0 F0(F j

1 (|1⟩ ⟨1|)) is a zero matrix so the denotational
semantics is the zero matrix with trace equal to 0.

Tr([[S]](ρ)) is the probability S terminates when started in state ρ. One may
show that Tr([[S]](ρ)) ≤ Tr(ρ).

4.2 Example

Recall the probabilistic example program P0 in Figure 1 where the tossing of
a coin, the qubit c, influences a random walk on the values of the register
consisting of two qubits p, and q.

The program starts in a state where all the qubits are initialized to |0⟩.
Hence the program initial state is |000⟩ ⟨000|. The first step of the program
is to swap the state of the qubit for the variable c so the density matrix then
becomes ρ = |100⟩ ⟨100|.

By convenience we let a partial density matrix be written as a sum of
elements

∑
piρi where pi is a probability and ρi is a partial density matrix

6

ρi = |0⟩ ⊗ |i⟩ · ⟨0| ⊗ ⟨i| where the label i ranges over the binary numbers 00, 01,
10 and 11.

The local variable c is indexed by 0 so let i = 0 in the definition of the
functions F0 and F1 in the denotational semantics. Then the semantics of the
loop, Fwhile(ρ), when the loop as input is given the density matrix ρ is

Fwhile(ρ) = 0 + F0(ρ) + F0(F1(ρ)) + F0(F2
1 (ρ)) + F0(F3

1 (ρ)) + · · ·
=

∑∞
n=1

1
22n+1 ρ00 +

1
22n ρ01 +

1
22n+1 ρ10 +

1
22n ρ11

= 1
6ρ00 +

1
3ρ01 +

1
6ρ10 +

1
3ρ11

Decomposing the part of Fwhile(ρ) relating to the subsystem being the local
variable c the semantics of P0 is TrD1(Fwhile(ρ)), i.e.

JP0K =
1

6
|00⟩ ⟨00|+ 1

3
|01⟩ ⟨01|+ 1

6
|10⟩ ⟨10|+ 1

3
|11⟩ ⟨11|

Hence the probability of observing an odd versus an even register value is 2/3
and 1/3 respectively.

It seems that variants of P0 where the value of the coin is manipulated
differently before and inside the loop all will produce an outcome where the
register values are not evenly distributed. So how to define a variant of P0
where the result is an even distribution of the register values? We could e.g.
make use of superposition. Let the program Q0 be P0 but with HH(p,q) added
just before entering the loop. The meaning of HH is I ⊗ H ⊗ H which brings
the register in a balanced superposition possessing all the potential four register
values simultaneously with equal probabilities. Consequently, when the register
is incremented (or decremented) all the four values will simultaneously be in-
cremented (decremented) leaving the register unchanged. Hence the semantics
of Q0 is the balanced superposition

JQ0K =
1

4
|00⟩ ⟨00|+ 1

4
|01⟩ ⟨01|+ 1

4
|10⟩ ⟨10|+ 1

4
|11⟩ ⟨11|

5 Quantum Markov Chains

In [2] the authors define a super-operator weighted Markov chain based on a
countable set of states and a transition function where pair of states are mapped
to a so-called super-operator over a Hilbert space. Below we adopt a slightly
different approach and define a variant of a quantum Markov chain inspired by
[5] as a pair (M,∆) where M is a square matrix with super-operator entries
and ∆ is a vector of partial density matrices on which M may be applied.
In contrast to the super-operator valued measure in [2] we define instead a
probability measure similar to as for DTMCs.

5.1 Example

Consider the program Q1 and its associated graph in Figure 2. We let labels on
the graph represent partial density matrix operators FU (ρ) = U · ρ · U† when

7

begin

register q;

while M[q] do H(q) end

end

S0

S1 S2

P0
P1

I

H

Figure 2: The code for Q1 and its graph representation.

U is unitary and FP (ρ) = P · ρ · P † where P is a projection. {P0, P1} is the
projective measurement on the qubit referred to by the variable q.

Intuitively the program starts in the initial state S0 in which a projective
measurement is made on its variable q. If the outcome is 0 the state S1 is entered
and never left, otherwise the program enters state S2 and returns to the initial
state after a Hadamard operation on q. Q1 can be represented by the 3 times
3 matrix M with density matrix operators where the indices 0, 1, 2 corresponds
to the program states S0, S1, and S2 respectively.

M =

 0 0 FH

FP0
I 0

FP1 0 0


Mi,j , corresponds to the operator applied when going from program state j to
i. So, the entries in column j are the outgoing operations from program state j
and the entries in row i are the incoming operations to program state i.

Assume an initial system state vector ∆ = (ρ0, 0, 0), i.e. the state S0 has
the initial value ρ0 = |0⟩ ⟨0|. We call the tupple MQ1 = (M,∆) for a quan-
tum Markov chain. Applying M on ∆ yields the system state vector M∆ =
(0,FP0

(ρ0), 0) = (0, ρ0, 0) and applying M once again gives M(M∆) = M∆,
hence the evolution of Q1 is the periodic system state vector path

∆(M∆)(M∆) . . . (M∆)

Since S1 is the terminal state in Q1 we may represent the semantics of Q1 by

JQ1K = lim
n→∞

(Mn∆)[1]

where (Mn∆)[1] is entry 1 in Mn∆.
Because FP1

(∆[0]) = 0 there is only one path of the system, i.e.

πQ1 = (0, ρ0)(1, ρ0)(1, ρ0) . . .

relative to the sequence of operators M1,0,M1,1,M1,1, . . .
Observe that we are operating with states at two levels, one kind of states

are the program states S0, S1, and S2, the other kind of states are the state
vectors of the associated Hilbert space represented as density matrices.

8

Suppose instead we have an initial system state vector ∆′ = (ρ′, 0, 0) where
ρ′ = |+⟩ ⟨+|. Then letting ρ1 = |1⟩ ⟨1| we get:

M1∆′ = (0, ρ0/2, ρ1/2)

M2∆′ = (ρ′/2, ρ0/2, 0)

M3∆′ = (0, 3ρ0/4, ρ1/4)

M4∆′ = (ρ′/4, 3ρ0/4, 0)

In general, if ∆n
0 = (0, (2n− 1)ρ0/2

n, ρ1/2
n) and ∆n

1 = (ρ′/2n, (2n− 1)ρ0/2
n, 0)

we have the non-periodic evolution of system state vectors

∆′∆1
0∆

1
1∆

2
0∆

2
1 . . .∆

i
0∆

i
1 . . .

In this case the system has infinitely many periodic paths:

π0 = (0, ρ′)(1, ρ0/2)(1, ρ0/2) . . .

π1 = (0, ρ′)(2, ρ1/2)(0, ρ
′/2)(1, ρ0/4)(1, ρ0/4) . . .

π2 = (0, ρ′)(2, ρ1/2)(0, ρ
′/2)(2, ρ1/4)(0, ρ

′/4)(1, ρ0/8)(1, ρ0/8) . . .

...

5.2 Quantum Markov Chains

We next define the notion of a discrete time quantum Markov Chain (QMC).
Suppose H with partial density matrices D. Let E be the set of endo-

functions on D and define (E + F)(ρ) = E(ρ) + F(ρ) and (E ◦ F)(ρ) = E(F(ρ))
for all E ,F ∈ E. (E,+, ◦) forms a semiring with monoids (E,+, 0) and (E, ◦, I).
Define the preorder ≤ by E ≤ F if Tr(E(ρ)) ≤ Tr(F(ρ)) for all ρ ∈ D. We
write E ≃ F if E ≤ F and F ≤ E and E < F if E ≤ F but E ̸≃ F . Obviously
0 ≤ F for all F . The preorder ≤ contains the partial order ⊑.

We let O be the set of endo-functions, operators, on D such that F ≤ I for
all F ∈ O. As an example, the two functions FU and FP belong to O for all
unitaries U and projections P . Also FP ≤ FU ≃ I for all P and U . Obviously
for any two E ,F ∈ O the composition E ◦ F ∈ O.

We let a vector ∆ = (ρ0, . . . , ρn−1) have trace Tr(∆) =
∑

i Tr(ρi) and call it
a system state vector if Tr(∆) = 1. When ∆ = (ρ0, . . . , ρn−1) we let ∆[i] = ρi.
Intuitively, a system state vector ∆ represents a state where the system is in
state i with probability Tr(∆[i]) and ∆[i] is the state for i in the associated
Hilbert space. For M ∈ On×n the matrix entry row i and column j is denoted
Mi,j . M is an operator on Dn if

∑
i Mi,j ≃ I for all j.

Definition 1 A QMC over H is a tupple M = (M,∆) where ∆ ∈ Dn is an
initial system state vector and M is an operator on Dn.

We sometimes write M∆ for M = (M,∆).
A QMC is a generalization of finite discrete time Markov chains without

atomic propositions since any such Markov chain M with n states can be en-
coded as (M,∆) over a one dimensional Hilbert space with ∆ = (ρ0, . . . , ρn−1)

9

where Tr(ρi) is the probability of initially being in the i’th state of M and Mi,j

is the probability of entering state i from state j.
Given M = (M,∆) where ∆ ∈ Dn a path of M is an infinite sequence of

path states, i.e. pairs of indices and partial density matrices,

π = (i0, ρ0)(i1, ρ1) . . . (ij , ρj) . . .

with ik ∈ {0, . . . , n − 1}, Tr(ρk) > 0, ρ0 = ∆[i0], and ρk+1 = Mik+1,ik(ρk).
PathM is the set of all paths of M. π[i] is the i’th element of π. prefix (π) is

the set of all prefixes of π and Pathfin
M = {π̂ ∈ prefix (π) |π ∈ PathM}. |π̂| is the

length of π̂ and last(π̂) is the last pair in π̂ if |π̂| > 0.
The evolution of M = (M,∆) is an infinite sequence of system state vectors

defined as a series of applications of M on ∆, i.e. the evolution of M is

∆(M∆)(M2∆) . . . (Mi∆) . . .

M is trace preserving because M is an operator, i.e. Tr(Mi∆) = 1 for all i. Also
we may by induction in i prove that

Lemma 1 For all i
∑

j{Tr(ρj) |π ∈ PathM, π[i] = (j, ρj)} = 1

5.3 Probability Space

Let PathM be the set of possible outcomes in the probability space for M. We
have to choose a non-empty collection of subsets of PathM as events to which
we want to assign probabilities. This set of events must form a σ-field. Like for
ordinary Markov chains we let the set of events be induced by cylinder sets.

For all π̂ ∈ Pathfin
M define the cylinder set CylM(π̂) by

CylM(π̂) = {π ∈ PathM | π̂ ∈ prefix (π)}

Hence CylM(π̂) is the set of all paths in PathM starting with π̂. Note that if π̂
is the empty prefix ϵ then CylM(π̂) = PathM.

Definition 2 Let ΣM be the least σ-field that for all π̂ ∈ Pathfin
M contains

CylM(π̂).

The probability for a cylinder set is defined by PrM(CylM(ϵ)) = 1 and whenever
last(π̂) = (i, ρ) for some i then

PrM∆
(CylM∆

(π̂)) = Tr(ρ) (1)

We let PrM(∅) = 0. If {CylM(π̂i)} is a collection of pairwise disjoint sets we
define

PrM(∪CylM(π̂i)) =
∑

PrM(CylM(π̂i))

Hence PrM is a premeasure on ΣM and from classical probability theory there
exists a unique extension of PrM to a probability measure on ΣM.

For MQ1 defined in Figure 2 PathMQ1
= {πQ1}. Hence CylMQ2

(π̂) = {πQ1}
for any finite path π̂ of MQ1. The least σ-field for MQ1 obviously is {∅, {πQ1}}
and PrMQ1

({πQ1}) = 1.

10

S0

S1

S2 S3

S4

S5 S6

S7 S8

X

P0
P1

I

H

P0 P1

A+ A-

H
H

Figure 3: Graph representation for P0.

MP0 =



0 0 0 0 0 0 0 0 0

FX 0 0 0 0 0 0 FH FH

0 FP0 FI 0 0 0 0 0 0

0 FP1
0 0 0 0 0 0 0

0 0 0 FH 0 0 0 0 0

0 0 0 0 FP0
0 0 0 0

0 0 0 0 FP1 0 0 0 0

0 0 0 0 0 FA+ 0 0 0

0 0 0 0 0 0 FA− 0 0



Figure 4: Matrix representation for the graph for P0.

5.4 Example

We may define a QMC MP0 = (MP0,∆) for the program P0 defined in Figure 1
with ∆ = (ρ0, 0, 0, 0, 0, 0, 0, 0, 0) where ρ0 = |000⟩ ⟨000| and with the graph for
P0 depicted in Figure 3 where {P0, P1} is the projective measurement on the
qubit referred to by the variable c. The matrix MP0 is defined in Figure 4.

Since S2 is the final state of P0 its denotational semantics may be defined as
the limit of the evolution ofMP0 for the index representing S2 while disregarding
the part of the system representing the variable c, i.e.

JP0K = TrD1
(lim
n→∞

(MP0
n∆)[2])

Writing ρij for |ij⟩ ⟨ij| and ρijk for |ijk⟩ ⟨ijk| the path

π̂0 = (0, ρ0)(1, ρ100)(3, ρ100)(4, |−⟩ ⟨−| ⊗ ρ00)

11

is the initial finite path for all paths in PathMP0
and PrMP0

(CylMP0
(π̂0)) = 1.

After π̂0 a measurement of the coin is done and the two following paths bring P0
back to S1 after having incremented and decremented respectively the register

π̂1 = π̂0(5,
1
2ρ000)(7,

1
2ρ001)(1, |+⟩ ⟨+| ⊗ 1

2ρ01)

π̂2 = π̂0(6,
1
2ρ100)(8,

1
2ρ111)(1, |−⟩ ⟨−| ⊗ 1

2ρ11)

Notice PrMP0
(CylMP0

(π̂1)) = PrMP0
(CylMP0

(π̂2)) = 0.5. π̂1 and π̂2 each have
two continuations

π̂3 = π̂1(2,
1
4ρ001)

π̂4 = π̂2(2,
1
4ρ011)

π̂5 = π̂1(3,
1
4ρ101)(4, |−⟩ ⟨−| ⊗ 1

4ρ01)

π̂6 = π̂2(3,
1
4ρ111)(4, |−⟩ ⟨−| ⊗ 1

4ρ11)

where PrMP0
(CylMP0

(π̂i)) = 0.25, i = 3, 4, 5, 6. π̂3 and π̂4 lead to

CylMP0
(π̂3) = {π̂1(2, 14ρ001)

ω}
CylMP0

(π̂4) = {π̂2(2, 14ρ011)
ω}

where the register is equal to 1 and 3 respectively with equal probability 0.25.
In general for n ≥ 1 we have paths with odd register value ij

πij
n = π̂ij

n (2,
1

22n
ρ0ij)

ω

for some π̂ij
n with PrMP0

({πij
n }) = 1

22n , and paths with even register value ij

πij
n = π̂ij

n (2,
1

22n+1
ρ0ij)

ω

for some π̂ij
n with probability PrMP0

({πij
n }) = 1

22n+1 .

6 Reachability Events

How to reason about programs in our programming language? How e.q. to
calculate the probability of reaching a set of states in a program execution? For
instance, for the program P0 in Figure 1 we may ask what is the probability of
the event ”there is a path to S2 such that the register value is 1”.

Suppose M = (M,∆) over H with computational basis {|0⟩ , . . . , |2n − 1⟩}
and where M is an m square matrix. Using a temporal logic like notation we
may write ♢S for the event ”a state in S will eventually be reached” where S
represents a set of path states and is a non-empty subset of

{(i, |j⟩) | i ∈ {0, . . . ,m− 1}, j ∈ {0, . . . , 2n − 1}}

We say (i, ρ) satisfies S and write (i, ρ) ⊢ S if there exists (i, |j⟩) ∈ S such that
Tr(|j⟩ ⟨j| ρ) > 0. We say i satisfies S and write i ⊢ S if (i, ρ) ⊢ S for some

12

ρ. We write π̂ ⊢ S if last(π̂) ⊢ S. We define Si,j = {(i, |j⟩)} and let Si be
the set ∪jSi,j . Note that {(i, |j⟩)} may be regarded a qualitative proposition
which (i, ρ) satisfies or not. ∪Si,k is a disjunction of all the propositions Si,k.
Intuitively (i, ρ) satisfies ∪kSi,k if the system states in H the partial density
matrix ρ represents are contained in the subspace being the span of

∑
|k⟩.

For the reachability event ♢S we formally define

PrM(♢S) =
∑

π̂∈PathM(S)

PrM(CylM(π̂)) (2)

with PathM(S) = {π̂ ∈ Pathfin
M | π̂ ⊢ S, ∀π̂′ < π̂. π̂′ ̸⊢ S} writing π̂′ < π̂ if π̂′

is a prefix of π̂ and π̂ ̸= π̂′. Observe that the cylinder sets in Equation 2 are
pairwise disjoint and since Path(S) is countable the event ♢S is measurable.

6.1 Transient state probabilities

Given a QMC M = (M,∆) the system state vector ∆n = Mn∆ contains the
probability Tr(∆n[i]) of being in state (i,∆n[i]) after n steps of evolution of M.
We call such a probability a transient state probability for i.

Suppose an event ♢Si. Its bounded variant ♢≤nSi saying that Si must be
reached in at most n evolution steps can be computed as a transient state prob-
ability for i by M′ = (N,∆) where N is as M except that i must be absorbing,
that is Ni,i = I and Nj,i = 0 for all j ̸= i. Note that N indeed is an operator
so M′ is well-defined. It is obvious that PrM(♢≤nSi) = PrM′(♢=nSi) and
PrM′(♢=nSi) = Tr(∆′[i]) where ∆′ = Nn∆.

If the event is ♢≤nSi,j we compute ∆′ as above and identify and interval by
the projection P = |j⟩ ⟨j| such that

p0 ≤ PrM(♢≤nSi,j) ≤ p1

where p0 = Tr(FP (∆
′[i])) and p1 = Tr(∆′[i]) if Tr(FP (∆

′[i])) > 0, otherwise
p1 = 0. Due to Lemma 1, intuitively p0 is the sum of the probabilities of P for
each finite paths leading to i, and p1 is the sum of the probabilities for each
finite path leading to i if at least one path satisfies P .

More generally if we have ♢≤nS where S = ∪Si,j for a fixed i and several
j’s we compute p0 and p1 as above but where P =

∑
(i,|j⟩)∈S |j⟩ ⟨j|.

6.2 Constrained Reachability

Reconsider the graph in Figure 3 and suppose we want to reach program state
S2, but only through certain other program states and requiring only specific
register values in S2. The event may for instance be ”S2 will eventually be
reached such that the register value has only been incremented and is 1”. This
is a constrained reachability event and can be formalized by TS2US2,1 where

TS2 = S0 ∪ S1 ∪ S3 ∪ S4 ∪ S5 ∪ S7

13

We define T US as a generalization of ♢S by

PrM(T US) =
∑

π̂∈PathM(T US)

PrM(CylM(π̂)) (3)

where PathM(T US) = {π̂ ∈ Pathfin
M | π̂ ⊢ S, ∀ϵ < π̂′ < π̂. π̂′ ⊢ T, π̂′ ̸⊢ S}.

Observe that also in this case the cylinder sets in Equation 3 are pairwise disjoint
and since Path(T US) is countable the event T US is measurable.

The bounded variant of T US is defined by

PrM(T U≤n S) =
∑

π̂∈PathM(T U≤n S)

PrM(CylM(π̂))

where PathM(T U≤n S) = {π̂ ∈ PathM(T US) | |π̂| ≤ n}.

6.2.1 Transient state probabilities

As we saw in Section 6.1 the probability of bounded reachability events may
be found as transient state probabilities, and the same holds for constrained
reachability events on the form ∪Ti U≤n S.

Assume a QMC M = (M,∆). Computing an interval for PrM(∪Ti U≤n S)
we modify M such that N in M′ = (N,∆) is M except that all j either satisfying
S or not satisfying ∪Ti become absorbing in N. Intuitively in the revised N one
stays with probability 1 in nodes satisfying S and nodes not satisfying ∪Ti
cannot be traversed. Obviously N is then an operator and M′ is well-defined.

If S = ∪kSj,k, hence as in Section 6.1 we may first compute Nn∆ and then
make projections.

6.2.2 Example

Suppose we are interested in calculating the probabilities of pure constrained
reachability events and not their bounded versions. One can imagine that such
probabilities may be calculated as transient state probabilities over the limit of
evolutions of QMCs. However, such computations may be infinite and rather
cumbersome in case of large matrices. Instead, we may turn to equation solving
as is common for finite DTMC’s, see e.g. [1]. We hence devise a two-phase
algorithm where first a graph analysis is performed to compute the subset of
nodes that can reach the goal nodes in one or more steps. In the second phase
we solve a linear equation of operators on partial density matrices.

Let us look at an example. How e.g. to calculate the probability of the event
TS2US2,1 for P0 defined in Figure 1 with its graph representation in Figure 3?
The first part of the algorithm identifies that nodes 2, 6, and 8 cannot reach the
goal node 2 in one or more steps. Hence we define a matrix AS2 leaving out the

14

rows and columns for the identified nodes in the matrix MP0 in Figure 4.

AS2 =



0 0 0 0 0 0

FX 0 0 0 0 FH

0 FP1
0 0 0 0

0 0 FH 0 0 0

0 0 0 FP0
0 0

0 0 0 0 FA+
0


A matrix in a QMC is defined with the purpose of evolution of a system, i.e.
applying MP0 on a state vector will give the next state vector in the evolution.
However, in our case we are interested in an iterative backward analysis com-
puting in the initial step those states that can reach the goal states in one step
and in the i+1’th step calculating those states that in one step can reach states
that can reach the goal states in i steps.2 For that kind of calculations the
transpose AT

S2 of AS2 is suitable.

AT
S2 =



0 FX 0 0 0 0

0 0 FP1 0 0 0

0 0 0 FH 0 0

0 0 0 0 FP0
0

0 0 0 0 0 FA+

0 FH 0 0 0 0


We hence aim to solve the equation system

AT
S2 |x⟩+ |ψS2⟩ = |x⟩ (4)

with |x⟩ = (x0, x1, x3, x4, x5, x7) and |ψS2⟩ = (0,FP001
, 0, 0, 0, 0). Intuitively the

solution to the variable xi is an operator such that (i, ρ) satisfies TS2US2,1 with
probability Tr(xi(ρ)). P001 = |001⟩ ⟨001| is the projection leading from S1 to
S2,1. The equation system (4) can be written as

|x⟩ = (FX ◦ x1,FP1 ◦ x3 + FP001 ,FH ◦ x4,FP0 ◦ x5,FA+ ◦ x7,FH ◦ x1)

and reduced to

x0 = FX ◦ x1
x1 = FP1

◦ FH ◦ FP0
◦ FA+

◦ FH ◦ x1 + FP001

If we did not use the transpose AT
S2 but AS2 instead the equation for x0 would be

x0 = 0 which is not what we are looking for. Recall we did a backward analysis
solving the equation system and therefore in the solution to x1 the operators

2In this example we need not consider when states are already a goal state since no initial
state is a goal state.

15

appear in inverse order. Hence letting E be the operator E = FH ◦ FA+ ◦ FP0 ◦
FH ◦ FP1 we infer the corresponding recursive continuous endo-function as a
solution to x1

FS2(F) = FP001
+ F(E)

with least fixed-point

µFS2 =

∞∑
i=0

FP001(E i)

A solution for x0 and hence the initial state S0 is then FS0 = µFS2 ◦ FX .
Consider the example FS0(ρ000) where ρijk = |ijk⟩ ⟨ijk| then

FS0(ρ000) = µFS2(ρ100)

=
∑∞

i=0 FP001(E i)(ρ100)

=
∑∞

i=0(
1
2)

2(1+4i)ρ001

= 64
255ρ001

Hence the probability of TS2US2,1, i.e. the trace of FS0(ρ000), is
64
255 ≈ 0.251.

6.2.3 Computing Constraint Reachability Probabilities

As we saw above, probabilities of constraint reachability events can be ana-
lyzed via the least fixed-point of mutual recursive functions over partial density
matrices. In this section we prove the correctness of such an approach where
the probability of a constrained reachability event is to be within a non-trivial
interval determined by a fixed-point.

Given M = (M,∆) and T US where S = ∪bSa,b and T = ∪Tc. Let N be
M but where rows and columns with indices not satisfying T ∪ S have entries 0
and also Ni,a = 0 for all i. Then N generates simultaneously recursive functions
Fi : (D → D)n → (D → D) defined by

Fi(X0, . . . , Xn−1) =

{
I if i = a∑

j Xj ◦ NT
i,j otherwise

Each Fi is well-defined since
∑

j NT
i,j ≤ I. Furthermore define the endo-function

FS,T on (D → D)n by

FS,T (X0, . . . , Xn−1) = (F0(X0, . . . , Xn−1), . . . ,Fn−1(X0, . . . , Xn−1))

The lifted partial order (D → D,⊑) is a CPO. A Cartesian product of n CPOs
is a CPO under componentwise ordering ⊑n, so ((D → D)n,⊑n) is a CPO. All
Fi are continuous if they are continuous in each argument, which they are, and
hence FS,T is continuous and its least fixed-point µFS,T is, letting ⊥= (0, . . . , 0),
the least upper bound of the increasing sequence

⊥⊑ FS,T (⊥) ⊑ . . . ⊑ F i
S,T (⊥) ⊑ . . .

16

A solution to Xi is an operator Gi on D. Intuitively Gi(∆[i]) is the sum
of those ρ where there exists a path π = (i,∆[i]) . . . with a prefix π̂ such that
last(π̂) = (a, ρ) and for all π̂′ where ϵ < π̂′ < π̂ then π̂′ ̸⊢ S and π̂′ ⊢ T . Hence
Tr(Gi(∆[i])) is the probability of reaching a from i through indices satisfying
T .

Given the existence of µFS,T = (G0, . . . ,Gn−1) the probability PrM(T US)
can be bound by the sum of the traces of (FP ◦Gi)(∆[i]) and Gi(∆[i]) respectively
where FP =

∑
|b⟩ ⟨b|.

Theorem 1 Let M = (M,∆), S = ∪bSa,b, and T = ∪Tc, and let µFS,T =
(G0, . . . ,Gn−1) and FP =

∑
|b⟩ ⟨b| then

p0 ≤ PrM(T US) ≤ p1

where p0 =
∑

i Tr((FP ◦ Gi)(∆[i])) and p1 =
∑

i Tr(Gi(∆[i])).

Proof Let M = (M,∆), S = ∪bSa,b, T = ∪Tc, and let µFS,T = (G0, . . . ,Gn−1)
and FP =

∑
|b⟩ ⟨b|. Due to Equation (1) and (3) it is sufficient to prove∑

i

Tr((FP ◦ Gi)(∆[i])) ≤
∑

π̂∈PathM(T US)

Tr(last(π̂)) ≤
∑
i

Tr(Gi(∆[i]))

where Tr(last(π̂)) = Tr(ρ) when last(π̂) = (j, ρ) for some j. Letting

F0
i (X0, . . . , Xn−1) = Xi

F j+1
i (X0, . . . , Xn−1) = Fi(F j

0 (X0, . . . , Xn−1), . . . ,F j
n−1(X0, . . . , Xn−1))

then since for j > 0

F j
S,T (⊥) = (F0(F j−1

0 (⊥), . . . ,F j−1
n−1(⊥)), . . . ,Fn−1(F j−1

0 (⊥), . . . ,F j−1
n−1(⊥)))

Gi is the least upper bounds of the increasing sequence

{Gj
i = Fi(F j−1

0 (⊥), . . . ,F j−1
n−1(⊥))}

so it is sufficient to prove for all j that∑
i

Tr((FP ◦ Gj
i)(∆[i])) ≤

∑
π̂∈PathM(T U≤j S)

Tr(last(π̂)) (5)

and ∑
π̂∈PathM(T U≤j S)

Tr(last(π̂)) ≤
∑
i

Tr(Gj
i (∆[i])) (6)

Notice that Gj
i is inductively defined by

G1
i =

{
I if i = a

0 otherwise

Gj+1
i =

{
I if i = a∑

k G
j
k ◦ NT

i,k otherwise

17

We first prove (6). Assume π̂ ∈ PathM(T U≤j S). Then for some i1, . . . , i|π̂|
with |π̂| ≤ j

π̂ = (i1, ρ1) . . . (i|π̂|, ρ|π̂|)

where ρ1 = ∆[i1], and ρk+1 = Mik+1,ik(ρk). Also (i|π̂|, ρ|π̂|) ⊢ S so i|π̂| = a and
when k < |π̂| then (ik, ρk) ⊢ T and (ik, ρk) ̸⊢ S. Hence Nik+1,ik = Mik+1,ik so
there exists

F i1
π̂ = I ◦ NT

i|π̂|−2,i|π̂|−1
◦ · · · ◦ NT

i1,i2

such that Tr(F i1
π̂ (ρ1)) > 0. Therefore, for any π̂ = (i,∆[i]) . . . ∈ PathM(T U≤j S)

there exists an operator F i
π̂ with F i

π̂(∆[i]) = ρ, last(π̂) = (a, ρ). Then letting

Pathi
M(T U≤j S) = {π̂ = (i,∆[i]) . . . | π̂ ∈ PathM(T U≤j S)}

by definition of Gj
i we have for all i∑

π̂∈Pathi
M(T U≤j S)

Tr(F i
π̂(∆[i])) ≤

∑
i

Tr(Gj
i (∆[i]))

from which we infer (6). Next we prove (5). If
∑

i Tr((FP ◦Gj
i)(∆[i])) = 0 we are

done. Suppose instead Tr((FP ◦ Gj
i)(∆[i])) > 0. By definition FP ◦ Gj

i =
∑

k Ek
where each Ek is on the form

Ek = FP ◦ I ◦ NT
il−1,il

◦ · · · ◦ NT
i1,i2

where l < j. Also, for each Ek where Tr(Ek(∆[i])) > 0 there exists

π̂k = (i1, ρ1) . . . (il, ρl)

where i1 = i, ρ1 = ∆[i], ρm+1 = Mim+1,im(ρm), Tr(FP (ρl)) > 0. Also il = a and
im ⊢ T , im ̸⊢ S for all m < l. Therefore π̂k ⊢ S and ∀ϵ < π̂ < π̂k. π̂ ⊢ T, π̂ ̸⊢ S
and hence π̂k ∈ Pathi

M(T U≤j S). It then follows that for all i

Tr((FP ◦ Gj
i)(∆[i])) ≤

∑
π∈Pathi

M(T U≤j S)

Tr(last(π̂))

from which we infer (5). □

Needless so say, the probability intervals of bounded constrained rechability
events T U≤i S may be computed by fixed-point approximations F i

S,T (⊥).
On a final note, why an interval and not an exact probability in Theorem 1?

Reconsider the example from Section 6.2.2 where we calculated the probability
of reaching a certain state where the register value is 1. In the example the
register always possesses just a single value, it is never in a superposition having
several values simultaneously with some probability. Computing the probability
is a matter of reachability of path states (2, ρ) where Tr(FP001

(ρ)) > 0. For
the successful state we have Tr(FP001(ρ)) = Tr(ρ). However, commonly for
S = ∪bSa,b and P =

∑
b |b⟩ ⟨b| we only know Tr(FP (ρ)) ≤ Tr(ρ). Therefore

we cannot in general compute the precise value of PrM(T US), we can only
constrain it by an interval.

18

7 Conclusion

We have presented a simple imperative quantum pseudo programming language
with a denotational semantics similar to [10] that leads naturally to our def-
inition of a QMC. The probability measure of a QMC is defined similar to
the probability measure for a DTMC in contrast to a super-operator valued
measure as in [2]. Our main novel contribution is the demonstration of how
intervals for probabilities for bounded reachability events may be computed as
transient state probabilities and how probability intervals for unbounded reacha-
bility events may be computed as the least fixed-point of a set of linear equations
over operators on partial density matrices.

Our notation for constraint reachability events allows only formulas on the
form ∪Ti U ∪j Sk,j where k is fixed, so as future work it would be interesting to
extend our framework to model checking properties in quantum extensions of
e.g. CTL and LTL. How would e.g. model checking in our framework compare
with the algorithms presented in [11]? Also, it would be interesting to pursue
a refinement of the QMC probability space to allow for exact calculation of
probabilities instead of just intervals. Finally, we plan to investigate under
which conditions a QMC has a finite number of path states and investigate how
such finiteness may influence the algorithmic complexity of model checking.

References

[1] C. Baier and J.P. Katoen. Principles of Model Checking. MIT Press, 2008.
isbn: 9780262026499.

[2] Y. Feng, N. Yu, and M. Ying. “Model checking quantum Markov chains”.
In: Journal of Computer and System Sciences 79.7 (2013), pp. 1181–1198.
issn: 0022-0000. doi: https://doi.org/10.1016/j.jcss.2013.04.002.

[3] R. P. Feynman. “Simulating Physics with Computers”. In: International
Journal of Theoretical Physics 21 (1982), pp. 467–488. doi: 10.1007/
BF02650179.

[4] S. Gay, R. Nagarajan, and N. Papanikolaou. Probabilistic Model–Checking
of Quantum Protocols. 2005. arXiv: quant-ph/0504007 [quant-ph]. url:
https://arxiv.org/abs/quant-ph/0504007.

[5] S. Gudder. “QuantumMarkov chains”. In: Journal of Mathematical Physics
49.7 (July 2008), p. 072105. issn: 0022-2488. doi: 10.1063/1.2953952.

[6] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Verification
of Probabilistic Real-Time Systems”. In: Computer Aided Verification.
Springer Berlin Heidelberg, 2011, pp. 585–591. isbn: 978-3-642-22110-1.

[7] B. Ömer. “Structured Quantum Programming”. PhD thesis. Institute for
Theoretical Physics, Vienna University of Technology, 2003. url: http:
//tph.tuwien.ac.at/~oemer/doc/structquprog.pdf.

19

[8] P. Selinger. “Towards a Quantum Programming Language”. In: Mathe-
matical Structures in Computer Science 14.4 (2004), pp. 527–586. doi:
10.1017/S0960129504004256.

[9] P. Shor. “Algorithms for quantum computation: discrete logarithms and
factoring”. In: Proceedings 35th Annual Symposium on Foundations of
Computer Science. 1994, pp. 124–134. doi: 10.1109/SFCS.1994.365700.

[10] M. Ying. “Floyd-hoare logic for quantum programs”. In: ACM Trans.
Program. Lang. Syst. 33.6 (2011), pp. 1–49. doi: 10.1145/2049706.
2049708.

[11] M. Ying and Y. Feng. Model Checking Quantum Systems: Principles and
Algorithms. Cambridge University Press, 2021. isbn: 9781108484305.

20

