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Abstract—The Boolean satisfiability problem (SAT) has been
extensively studied in the context of quantum computing over
the past few decades. A key challenge lies in the efficient rep-
resentation of SAT instances—typically expressed in conjunctive
normal form (CNF)—as quantum circuits. Among various en-
coding methods, the exclusive-sum-of-products (ESOP) approach
has shown significant promise in minimizing clause complexity,
thereby reducing the overall quantum resource overhead. The
objective of this work is to analyze the effectiveness of the ESOP-
based CNF (e-CNF) encoding in reducing the upper bounds on
qubit requirements and Clifford+T gate counts, and to develop an
approach for quantum circuit interpretation of e-CNF to validate
these bounds.

Index Terms—Boolean Satisfiability Problem (SAT), ESOP
(Exclusive-Sum-of-Products) Encoding, Quantum Circuit Opti-
mization

I. INTRODUCTION

The Boolean satisfiability problem (SAT) is a fundamental
problem in computer science and logic, with a wide range
of applications. Various solution techniques have been devel-
oped over the years, including the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [1], conflict-driven clause learn-
ing (CDCL) [2], and local search methods such as Walk-
SAT [3]. These algorithms form the core of many state-of-the-
art SAT solvers, such as the Z3 Satisfiability Modulo Theories
(SMT) solver [4]. SAT instances are typically represented as
Boolean formulas, which must be transformed into conjunctive
normal form (CNF) before processing.

Recent research has explored quantum approaches to solv-
ing SAT problems. These include formulating SAT as a
quadratic unconstrained binary optimization (QUBO) problem
for execution on quantum annealers [5], [6], and applying
Grover’s algorithm within gate-based quantum computing
frameworks [7], [8]. A key challenge in using Grover’s al-
gorithm for SAT lies in efficiently encoding the problem as
a quantum oracle. This requires translating the CNF repre-
sentation into a quantum circuit, often introducing logical
equivalence (⇔) relations in the process.

To address the complexity of this encoding, prior work [9]
proposed the use of exclusive-sum-of-products (ESOP)-based
CNF representations—referred to as e-CNF—for handling
equivalence relations. This approach demonstrated up to a
60% reduction in clause count. Although initially applied
to hardware equivalence checking, where all CNF clauses
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originate from ⇔ relations, the method holds promise for
broader applications in quantum SAT solving.

Direct ESOP-based transformation of ⇔ relations offers
a more resource-efficient quantum circuit representation. In
contrast, applying Tseitin transformation [10] to ⇔ before
circuit synthesis can lead to significantly higher quantum
cost. Motivated by this, the present work investigates the
complexity of generating quantum circuits from both CNF and
e-CNF expressions, evaluating them in terms of Clifford+T
gate requirements. Additionally, we propose an automated
framework for validating these complexity bounds and bench-
marking e-CNF-based quantum circuit interpretations against
their traditional CNF-based counterparts.

II. SAT ENCODING

A. Conventional CNF Representation

In SAT encoding, the basic logical operators—NOT (¬),
OR (∨) and AND (∧)—are used to express more complex
operations such as implication (⇒), equivalence (⇔), and
exclusive-OR (⊕) in conjunctive normal form (CNF). This
form is particularly suitable because, in practice, many logical
formulas emerge from the conjunction of multiple constraints
that must hold simultaneously.

The transformation into CNF involves applying De Mor-
gan’s laws to push negations ¬ inward toward atomic propo-
sitions, such as:

¬(a ∨ b) = ¬a ∧ ¬b (1)

and distributing ∨ over ∧:

(a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c). (2)

However, such transformations can cause an exponential blow-
up in the size of the formula. For instance:

(a1 ∧ a2 ∧ · · · ∧ an) ∨ (b1 ∧ b2 ∧ · · · ∧ nn)

= (a1 ∨ b1) ∧ (a2 ∨ b2) ∧ · · · ∧ (an ∨ bn). (3)

To mitigate this, new auxiliary propositions are introduced to
represent sub-formulas, coupled with constraints to preserve
logical equivalence at the sub-formula level. For example,
consider the formula:

ϕ = (a1 ∧ ¬a2) ∨ ¬(a3 ∧ a4) ∨ · · · ∨ (an−1 ∧ an) (4)

We can introduce new propositions p1, p2, . . . , pm for sub-
formulas:

p1 ⇔ a1 ∧ ¬a2, p2 ⇔ a3 ∧ a4, · · · , pm ⇔ an−1 ∧ an. (5)
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Fig. 1. Quantum circuit representation of proposition p1 ⇔ a1 ∧¬a2 based
on conventional CNF interpretation using three ancilla qubits, three Pauli X
gates, and a pair of C2X and C3X gates with some controls of negative polarity.

Using these, the formula can be rewritten as:

ϕ̂ =(p1 ∨ ¬p2 ∨ · · · ∨ pm) ∧ (p1 ⇔ a1 ∧ ¬a2)
∧ (p2 ⇔ a3 ∧ a4) ∧ · · · ∧ (pm ⇔ an−1 ∧ an). (6)

While ϕ and ϕ̂ are not logically equivalent (i.e., ϕ ̸≡ ϕ̂), they
are equisatisfiable, i.e., share the same satisfiability status:

ϕ ≡SAT ϕ̂ (7)

This technique is formalized through the Tseitin transforma-
tion [10], which introduces propositions of the form:

pi ⇔ F (8)

where F is a sub-formula. This process leads to the generation
of logically equivalent CNF expressions such as:

p1 ⇔ a1 ∧ ¬a2
≡ (¬a1 ∨ a2 ∨ p1) ∧ (a1 ∨ ¬p1) ∧ (¬a2 ∨ ¬p1) (9)

The transformation ensures linear growth in formula size
while preserving equisatisfiability, making it a practical tool
for SAT solving. However, the quantum circuit realization
of this transformation remains resource-intensive. Specifically,
it requires three additional ancilla qubits per equivalence
clause, along with a significant increase in gate complexity,
as illustrated in Fig. 1.

According to [11], implementing a three-controlled X (C3X)
gate requires 33 Clifford+T gates, including 6 Hadamard (H),
15 T, and 12 CNOT (CX) gates. Similarly, a two-controlled
X (C2X) gate requires 15 Clifford+T gates (2 H, 7 T, and
6 CX). Therefore, realizing each proposition of the form in
Eq. (6) entails: three ancilla qubits, and 99 (i.e., 2 × (33 +
15)+3) Clifford+T gates per clause. Consequently, for m such
propositions, the total resource cost becomes 3m ancilla qubits
and 99m Clifford+T gates, posing a significant overhead for
quantum implementation.
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Fig. 2. Quantum circuit representations of proposition p1 ⇔ a1∧¬a2 based
on e-CNF interpretation using either (a) a Pauli X gate, a CX gate, and a
C2X gate or (b) a CX gate, and a C2X gate with come controls of negative
polarity.

B. e-CNF Representation

The exclusive-sum-of-products (ESOP) based CNF (e-CNF)
representation extends traditional SAT encoding by incorpo-
rating the exclusive-OR (⊕) operator. This added support
for exclusive disjunction enables more compact and efficient
encodings of certain logical propositions.

Specifically, propositions of the form Eq. (8) can be equiv-
alently rewritten using XOR as:

pi ⇔ F ≡ 1⊕ pi ⊕F . (10)

For instance, the proposition from Eq. (9) can be expressed
as:

p1 ⇔ a1 ∧ ¬a2 ≡ 1⊕ p1 ⊕ a1 ∧ ¬a2
≡ ¬p1 ⊕ a1 ∧ ¬a2 (11)

This transformation corresponds to the quantum circuit
shown in Fig. 2, which requires only 17 Clifford+T gates—
comprising one C2X gate, one CX gate, and one Pauli-X gate.
In contrast, the quantum circuit derived from the conventional
CNF-based transformation in Eq. (9) (see Fig. 1) is signif-
icantly more resource-intensive. The e-CNF-based approach
eliminates the need for: three ancilla qubits, two C3X gates,
one C2X gate and two additional Pauli-X gates. As a result, the
total gate count reduction achieved using e-CNF over standard
CNF is 82 (i.e., 2× 33 + 15 + 1) Clifford+T gates.

Additionally, disjunctions (∨) in Boolean formulas can also
be represented using ESOP forms, such as:

a1 ∨ a2 ∨ · · · ∨ an = 1⊕ ¬a1 ∧ ¬a2 ∧ · · · ∧ ¬an. (12)

Using this formulation, the e-CNF representation of Eq. (6)
becomes:

ϕ̃ =(1⊕ ¬p1 ∧ p2 ∧ · · · ∧ ¬pm) ∧ (¬p1 ⊕ a1 ∧ ¬a2)
∧ (¬p2 ⊕ a3 ∧ a4) ∧ · · · ∧ (¬pm ⊕ an−1 ∧ an) (13)

This representation preserves equisatisfiability, i.e.,

ϕ ≡SAT ϕ̂ ≡SAT ϕ̃ (14)

According to [11], the realization of an CmX gate requires
18m− 21 Clifford+T gates, including 4m− 6 H gates, 8m−
9 T gates, and 6m − 6 CX gates. Realizing m propositions
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of the form in Eq. (11) requires 17m Clifford+T gates. The
expression 1 ⊕ ¬p1 ∧ p2 ∧ · · · ∧ ¬pm additionally requires
18m− 20 Clifford+T gates.

To compute the final output, the conjunction of all m + 1
ESOP expressions (from Eq. (13)) necessitates one more CmX
gate and quantum uncomputation, which also requires 18m−
21 and 35m−20 Clifford+T gates, respectively. Thus, the total
gate cost for the e-CNF-based realization is 88m − 61 (i.e.,
2 × (35m − 20) + 18m − 21) Clifford+T gates. In contrast,
the conventional CNF-based realization from Eq. (6) requires
252m−61 (i.e., 2×(117m−20)+18m−21) Clifford+T gates.
This results in a net reduction of 164m gates, highlighting the
substantial efficiency gain of the e-CNF-based quantum circuit
construction over traditional CNF-based approaches.

III. CONCLUSION

This work analyzes the resource requirements for encoding
SAT instances as quantum circuits, with a focus on evaluat-
ing the advantages of using e-CNF-based clause generation
over the conventional CNF-based approach. In particular, for
interpreting equivalence (⇔) propositions, the e-CNF method
demonstrates a significant reduction in both qubit count and
quantum gate complexity. For example, a proposition of the
form pi ⇔ aj ∧ bk requires 3 additional qubits and 99
Clifford+T gates using the CNF-based approach, whereas the
equivalent e-CNF-based circuit needs only 17 Clifford+T gates
and no additional qubits. Future work will focus on developing
automated techniques to evaluate the resource bounds of e-
CNF-based quantum circuit interpretations and benchmarking
their performance against CNF-based implementations.
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